Some results on k-quasi-hyponormal operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks about Almost Semi-hyponormal Operators

We define the class of almost semi-hyponormal operators on a Hilbert space and provide some sufficient conditions in which such operators are almost normal, that is their self-commutator is in the trace-class. Mathematics Subject Classification: 47B20

متن کامل

ON p-HYPONORMAL OPERATORS

In this paper we show that p-hyponormal operators with 0 / ∈ σ(|T | 1 2 r ) are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

متن کامل

Some Remarks on the Invariant Subspace Problem for Hyponormal Operators

We make some remarks concerning the invariant subspace problem for hyponormal operators. In particular, we bring together various hypotheses that must hold for a hyponormal operator without nontrivial invariant subspaces, and we discuss the existence of such operators. 2000 Mathematics Subject Classification. 47B20, 47A15. Let be a separable, infinite-dimensional, complex Hilbert space and deno...

متن کامل

Some results on pre-monotone operators

‎In this paper‎, ‎some properties of pre-monotone operators are proved‎. ‎It is shown that in a reflexive Banach space‎, ‎a full domain multivalued $sigma$-monotone operator with sequentially norm$times$weak$^*$ closed graph is norm$times$weak$^*$ upper semicontinuous‎. ‎The notion of $sigma$-convexity is introduced and the‎ ‎relations between the $sigma$-monotonicity and $sigma$-convexity is i...

متن کامل

EXTENSIONS OF THE RESULTS ON POWERS OFp-HYPONORMAL AND log-HYPONORMAL OPERATORS

Firstly, we will show the following extension of the results on powers of p-hyponormal and log-hyponormal operators: let n andm be positive integers, if T is p-hyponormal for p ∈ (0,2], then: (i) in case m ≥ p, (Tn+mTn+m)(n+p)/(n+m) ≥ (TnTn)(n+p)/n and (TnTn ∗ )(n+p)/n ≥ (Tn+mTn+m)(n+p)/(n+m) hold, (ii) in case m < p, Tn+mTn+m ≥ (Tn ∗ Tn)(n+m)/n and (TnTn ∗ )(n+m)/n ≥ Tn+mTn+m hold. Secondly, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1985

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700002458